Is it possible to construct a circuit with just passive elements (resistor,inductor,capacitor) that will work as voltage amplifier?

Author: -Jishu Das
Currently $1^{\text {st }}$ year Student pursuing BS-MS 5 year Dual Degree at IISER, Kolkata
Email Id: - jd13ms109@iiserkol.ac.in

Abstract

We use different type of elements such as BJT in order to get the voltage amplified. In this paper I have tried if it is somehow possible to amplify voltage only by using resistor, inductor and capacitor which may help us to build an efficient Electrical Network.

Content-Consider a single phase series A.C. circuit with a voltage source $\mathrm{V}=\mathrm{Vm} \cdot \operatorname{Sin}(\omega \mathrm{t})$, Resistor of resistance R, Inductor of inductance L and Capacitor of capacitance C. Say VR,VL and VC be the voltage across Resistor, Inductor and Capacitor. I be the current flowing through the circuit then
$\mathrm{I}=\mathrm{Im} \cdot \sin (\omega \mathrm{t}+\varphi)$
$\mathrm{VR}=\mathrm{VRm} \cdot \sin (\omega \mathrm{t}+\varphi)$
$\mathrm{VL}=\mathrm{VLm} \cdot \cos (\omega \mathrm{t}+\varphi)$
$\mathrm{VC}=\mathrm{VCm} \cdot \cos (\omega \mathrm{t}+\varphi)$
Where

$$
(\mathrm{Vm})^{2}=(\mathrm{VRm})^{2}+(\mathrm{VLm}-\mathrm{VCm})^{2}
$$

At resonance condition $\mathrm{VLm}-\mathrm{VCm}=0$ i.e. $\mathrm{VLm}=\mathrm{VCm}$ and $\varphi=0$

$$
\begin{aligned}
V=V R=I \cdot R & =\operatorname{Im} \cdot \operatorname{Sin}(\omega t) \cdot R \\
& =\operatorname{Im} \cdot R \cdot \operatorname{Sin}(\omega t) \\
\operatorname{Im} & =\frac{V m}{R} \\
\omega & =\frac{1}{\sqrt{L \cdot C}} \\
\mathrm{VL}=\mathrm{I} \cdot \mathrm{j} \cdot \omega \cdot \mathrm{~L}= & \operatorname{Im} \cdot \operatorname{Sin}(\omega \mathrm{t}) \cdot \mathrm{j} \cdot \omega \cdot \mathrm{~L} \\
& =\quad \operatorname{Im} \cdot\left(\frac{1}{\sqrt{L \cdot C}}\right) \cdot \mathrm{L} \cdot
\end{aligned}
$$

$\cos (\omega t)($ As multiplying j brings a \quad / 2 phase shift)

$$
=\operatorname{Im} \cdot \sqrt{\frac{L}{C}} \cdot \cos (\omega \mathrm{t})
$$

$$
=\frac{\mathrm{Vm}}{\mathrm{R}} \cdot \sqrt{\frac{L}{C}} \cdot \cos (\omega \mathrm{t})
$$

If we take V as input voltage and VL as output then the ratio $\mathrm{VLm} / \mathrm{Vm}$ will be the voltage gain (in amplitude) which is equal to $\frac{\sqrt{\frac{L}{C}}}{\mathrm{R}}$ which is not necessary to be less 1 i.e. it may have value greater than 1 and act as voltage amplifier.

For instance $\mathrm{L}=0.1 \mathrm{H}, \mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{R}=10 \Omega$ i.e. ω (at resonance) $=1000 \mathrm{rad} / \mathrm{sec}$.
The voltage gain will be equal to 10 i.e. if I apply $\mathrm{V}=12 \operatorname{Sin}(\omega \mathrm{t})$ then output will be
$\mathrm{V}_{\mathrm{L}}=120 \operatorname{Cos}(\omega \mathrm{t})$.
It should be noted that the output that we will get will be across the Inductor. Also the same output we can get across the Capacitor as $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}$

For real practice say ($\mathrm{f}=100 \mathrm{sec}^{-1}$) $\quad \omega$ (at resonance) $=2^{*} \mathrm{pi}^{*} \mathrm{f}=314 \mathrm{rad} / \mathrm{sec}$ we can choose the value of L to be 1 H corresponding $\mathrm{C}=1 /(314 * 314)=10.14 \mu \mathrm{~F}$ and take $\mathrm{R}=31.4 \Omega$ then the voltage gain will remain the same i.e. 10 .

International Journal of Scientific \& Engineering Research Volume 5, Issue 4, April-2014
ISSN 2229-5518

It may happen that we cannot obtain the resonance condition exactly to the mathematical figures.
At that condition
$\mathrm{I}=\mathrm{Im} \cdot \sin (\omega \mathrm{t}+\varphi)($ Where φ is the initial phase $)$

$$
V L=I \cdot \omega \cdot j \cdot L=I m \cdot \omega \cdot L \cdot \cos (\omega t+\varphi)
$$

$=\mathrm{VLm} \cdot \cos (\omega \mathrm{t}+\varphi)$
$\mathrm{VLm}=\operatorname{Im} \cdot \omega \cdot \mathrm{L}=\mathrm{Vm} \cdot \omega \cdot \frac{\mathrm{L}}{\sqrt{R^{2}+\left(\omega * \mathrm{~L}-\frac{1}{\omega * \mathrm{C}}\right)^{2}}}$

For $\omega=314$ radsec $^{-1}, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{R}=30 \Omega$
We have $\varphi=-0.14$ radian
VLm=Vm•10.49
i.e. if I apply $\mathrm{V}=12 \sin (\omega \mathrm{t})$ then output will be
$\mathrm{VL}=125.88 \cos (\omega \mathrm{t}-0.14)$
In order to get D.C. output we can use rectifier on both input and output terminals.

In this way we can vary the value of R, L and C that is suitable for frequency and required voltage gain.

Conclusion- In short yes we can have a voltage amplifier that consists of an A.C. source as input, Inductor, Capacitor and Resistor (at least theoretically).

Acknowledgement - I would like to thank all the students of Electrical Branch(2012-16 Batch) of College of Engineering and Technology, Bhubaneswar, Odisha and all the students of Indian Institute of Science Education and Research(2013 Batch), Kolkata; who have inspired me to write this.

International Journal of Scientific \& Engineering Research Volume 5, Issue 4, April-2014 ISSN 2229-5518

