International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 ISSN 2229-5518

Is it possible to construct a circuit with just passive elements (resistor,inductor,capacitor) that will work as voltage amplifier?

Author: -Jishu Das

Currently 1st year Student pursuing BS-MS 5 year Dual Degree at IISER, Kolkata Email Id: - <u>jd13ms109@iiserkol.ac.in</u>

Abstract— We use different type of elements such as BJT in order to get the voltage amplified. In this paper I have tried if it is somehow possible to amplify voltage only by using resistor, inductor and capacitor which may help us to build an efficient Electrical Network.

Content— Consider a single phase series A.C. circuit with a voltage source V=Vm·Sin (ω t), Resistor of resistance R, Inductor of inductance L and Capacitor of capacitance C. Say VR ,VL and VC be the voltage across Resistor, Inductor and Capacitor. I be the current flowing through the circuit then

$$\begin{split} I = Im \cdot sin (\omega t + \phi) \\ VR = VRm \cdot sin (\omega t + \phi) \\ VL = VLm \cdot cos (\omega t + \phi) \\ VC = VCm \cdot cos (\omega t + \phi) \\ Where \\ (Vm)^2 = (VRm)^2 + (VLm - VCm)^2 \end{split}$$

At resonance condition VLm-VCm=0 i.e. VLm=VCm and $\phi = 0$

$$V = VR = I \cdot R = Im \cdot Sin (\omega t) \cdot R$$

= $Im \cdot R \cdot Sin (\omega t)$
 $Im = \frac{Vm}{R}$
 $\omega = \frac{1}{\sqrt{L \cdot C}}$
VL = I \cdot j \cdot \omega \cdot L = Im \cdot Sin (\omega t) \cdot j \cdot \omega \cdot L
= $Im \cdot \left(\frac{1}{\sqrt{L \cdot C}}\right) \cdot L \cdot C$
cos (\omega t)(As multiplying j brings a $\pi/2$ phase shift)
= $Im \cdot \sqrt{\frac{L}{C}} \cdot cos (\omega t)$

If we take V as input voltage and VL as output then the ratio VLm/Vm will be the voltage gain (in amplitude) which is equal to $\frac{\sqrt{L}}{R}$ which is not necessary to be less 1 i.e. it may have value greater than 1 and act as voltage amplifier.

For instance L=0.1H, C=10 μ F and R=10 Ω i.e. ω (at resonance) = 1000 rad/sec.

The voltage gain will be equal to 10 i.e. if I apply V=12 Sin (ω t) then output will be V_L=120 Cos (ω t).

It should be noted that the output that we will get will be across the Inductor. Also the same output we can get across the Capacitor as $V_L=V_C$

For real practice say (f=100 sec⁻¹) ω (at resonance) =2*pi*f=314 rad/sec we can choose the value of L to be 1H corresponding C=1/ (314*314) =10.14µF and take R=31.4 Ω then the voltage gain will remain the same i.e. 10.

International Journal of Scientific & Engineering Research Volume 5, Issue 4, April-2014 ISSN 2229-5518

It may happen that we cannot obtain the resonance condition exactly to the mathematical figures. At that condition

 $I = Im \cdot sin (\omega t + \varphi)$ (Where φ is the initial phase)

$$VL = I \cdot \omega \cdot j \cdot L = Im \cdot \omega \cdot L \cdot \cos(\omega t + \varphi)$$

= VLm \cdot \cos (\overline t + \overline)

 $= VLm \cdot \cos (\omega t + \varphi)$ $VLm = Im \cdot \omega \cdot L = Vm \cdot \omega \cdot \frac{L}{\sqrt{R^2 + (\omega * L - \frac{1}{\omega * C})^2}}$

For ω =314 radsec⁻¹, L=1H, C=10µF and R=30 Ω We have φ = -0.14 radian VLm=Vm·10.49 i.e. if I apply V=12 $sin(\omega t)$ then output will be VL=125.88 cos (ωt-0.14)

In order to get D.C. output we can use rectifier on both input and output terminals.

In this way we can vary the value of R, L and C that is suitable for frequency and required voltage gain.

Conclusion— In short yes we can have a voltage amplifier that consists of an A.C. source as input, Inductor, Capacitor and Resistor (at least theoretically).

Acknowledgement — I would like to thank all the students of Electrical Branch(2012-16 Batch) of College of Engineering and Technology, Bhubaneswar, Odisha and all the students of Indian Institute of Science Education and Research(2013 Batch), Kolkata; who have inspired me to write this.

International Journal of Scientific & Engineering Research Volume 5, Issue 4, April-2014 ISSN 2229-5518

IJSER